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SUMMARY

A two-dimensional Lagrangian finite-difference computer program is
developed for wave propagation analysis of buried model structures under
ground-shock loading. The numerical scheme is the standard method originally
proposed by von Neuman and Richtmyer, using artificial viscosity to smooth
shock  fronts. The progran is enlirely core-contained, and is limited to
about 3,000 nodes because of its anticipated application on personal

computers such as IBM-AT.

Material models include standard hydrodynamic-elastic-plastic relations

as well as a new equation for soils and concrete.

Three model systems were considered for wave analysis: plane slabs with
and without a protective scil cover and a buried model frame. The first two
represent two of the idealized model tests described in Volume I. Since few
dynamic data exists regarding the behaviors of the sand and microconcrete
used in the construction of the model systems, the calculations were
intended for generating the qualitative features of model behaviors.
Nevertheless, the computational results were consistent with experimental
observations and provided a rational basis for interpreting modes of

failure, load profiles at concrete surface, and their interrelationships.

The wave analysis of the buried frame indicated that modes of
structural failures under dynamic loading can be predicted by directly

focusing on shock waves that excite the model structure.
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SECTION 1
INTRODUCTION

A. OBJECTIVE

This phase of the research program, undertaken under Contract FO 8635
85K 0052, was concerned with the development of computational capabilities,
primarily in support of the experimental phase of the program described in
Volume 1 of the two-volume final report. There were two interrelated goals.
The first was the development of a suitable computer program and
constitutive equations to study numerically the idealized scaled model
testing of buried structures through use of our gun facilities. The second
was the demonstration of the applicability of the program to more realistic
model structures. Special emphasis was placed on a unified treatment of
topics that are traditionally analyzed separately. They are ground- shock
propagation, soil-structure interactions, in-structure shock wave propaga-

tion, and failures in structural members.

B. BACKGKOUND

Dynamic problems of protective structures attendant on impact and/or
explosion are difficult to solve because of nonlinear differential equations
involving comples geometry and materials behaviors. Therefore, traditional
procedures for the design and analysis of protective structures against
conventional, as well as nuclear weapons, have been separated into two or
three distinct stages (References 1 and 2). For instance, in the case of
blast or ground-=shock loading, the procedure involves two separate steps.
The first 1is the determination of equivalent loads from blast or ground
shuck at a prescribed standoff distance. The second is the design analysis
and performance prediclions of a given structure, based upon the equivalent

\ loads, by assuming an equivalenl single- or multidegree of freedom system.




Recent improvements in the development of predictive and analysis
techniques have been mostly numerical and involve computer simulation of the
dynamic problems by use of finite element and finite difference methods
(References 3-6). Large-scale computations have come into widespread use in
structural and ordnance designs. These methods have now been developed to a
point where they can handle complex shapes, large deformations, and failures
involved in problems of impact and explosion. The principal limitation in
the use of these numerical methods is said to be largely the uncertainty in
the description of meterials behavior (Reference 3). If the response model
is inadequate, they are known to provide solutions which are not even
qualitatiely correct. Therefore, effective use of any of the numerical
techniques requires iterative adjustments of material wmodels in close

collaboration with material and structural testings.

The present investigation leading to this repert is an initial attempt
of similar type to analyze and aid in the design of the scaled model testing
of buried concrete structures by use of a finite difference computer

program.

C. SCOPE/APPROACH

Many computer codes are available for the analysis of transient
problems associated with impact and explosions (References 4-11). Our
computer program 1s a two-dimensional explicit finite difference code in
plane geometry and is derived from other codes of this type which are known
by their acronyms as HEMP, TWOODY, STEALTH, and TROTT. Special features of

the code are :

o the code is core—contained,

e the cell layout is easyv,

o the code can be easily modified for new materials

models.




However, it is restricted in the size of problems that can be treated and
does not contain features such as slide lines, rezoning, and buffering of

cell wvariables that are common in large general-purpose codes described

above.

Constitutive models in the program are presently limited to: (1) a
standard hydrodynamic-elastic-plastic model for solids and (2) a model
specially developed for soils and concrete. The latter is developed to deal
with the influence of porosity on the inelastic behavior of materials in a
physically consistent manner so that phenomena such as shear enhanced pore
compaction can be represented. New models will be added as needs arise. For
instance, a high-explosive equation of state will be included in the near
future to consider the scaied model simulation of buried structures under

close-in detonations.

Two model systems were investigated numerically: plane slabs with and
without & protective soil cover and a buried model frame. The explosive
loading on these structures was simulated by a shock-wave loading described
in Volume I of the firsl report. Selected results from the numerical
simulation of the plane 3labs were compared with data obtained in the
experimental phase of the preject. They are a qualitative description of
failure modes, ground-shock propagation in the soil cover, and structural
response behaviors of the model structures. However, because of limited
experimental data, no systematic attempt was made to fit the experimental
data numerically by optimizing material parameters in constitutive
equations. The principal goal of the calculations was to demonstrate the

capabilities of the code.

The remainder of this report is divided into three sections. Section
IT presents a summary of basic continuum mechanics equations for describing
two-dimensiona]l stress wave propagation through solid and porous materials
such as soil. This section also describes the algorithms used to solve the
basic equalions by using an explicit finite difference method. Section TIII
describes the numerical investigation of ground-shock propagation in simple

layered systems: plane slabs with and without protective soil cover and a

3




buried frame. Selected results from the first example were

compared with

experimental results reported in Volume I of the final report. Section 1V

presents the conclusions reached from the sample simulations.
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SECTION 11
CODE DESCRIPTION
A. BASIC EQUATIONS

The mathematical description of transient dynamical problems attendant
on impact and detonations consists of the conservation laws of physics,
initisl and boundary conditions, and material models. The finite difference
technique 1is an approximate method of solving these equations using
discretized time and space coordinates. The Lagrangian method is based upon
a coordinate system that moves with the material. It has been developed to
a point where general-purpose codes are now capable of handling large-scale
simulations involving 50,000 nodes. Since there are many excellent
expositions of the Lagrangian technique for stress wave propagation in one-,
two—, and even three dimensicns (References 7-11), what follows is a summary
description of the basic equations and computational procedures involved in
our code. For details, readers are referred to the References described
above. RBut, on exception will be made in the description of the material
model for soils and concrete because of its importance in the solution of

problems of interest.
1. Conservation Equations
a. Conservation of Mass
The equation expressing the conservation of mass is
Uy + v,y = A/A (1)
where u and v are the components of velocity in rec.%linear Lagrangian
coordinates (x,y), A/A is the serial strain rate, the dot "." signifies the

partial time derivative, u,, = du/dx and u,y = dv/dy. The volumetric strain

rate is related to the density change as follows:

(&,




-(dp/0t)/p

n
[

+
<

+
x

A/A in plane x - y geometry (2)

where 1/p = V = the specific volume, and W is the velocity component in the

z-axis (zero in plane geometry).

The local strain rate is defined as the symmetric part of the

velocity gradient.

XX x

S

Yy Y

by = (Vg + W, )/2

The local rotation rate is defined by

mxy = (v,x - u,y)/2.
b. Conservation of Momentum
The equations expressing the conservation of momentum are
pU = “%x,x © xy,y  Vx (3)
Sy Oy T By (4)

where p is the density, 0 and v are the components of acceleration, oy,
Oxys and oyy are the stress components, and q the artificial viscosity.
The sign convention for the stress components is positive for tension.

Pressures are positive for compression.




Inclusion of the artificial viscosity term in the momentum
equations is now a standard technique of han 1g discontinuous shock ‘waves
numerically, by rendering the solution continuous using viscous effects.
However, care is necessary so that the viscous term does not affect the
solution anywhere except at shock fronts. 1In our code the main artificial
viscosity term consists of linear and quadratic bulk viscosity components

given by

1/2 2 2
blcsA Pry + bzA(p,t) /p for r, >0

q = (5)
0 for P>y <0

where by and by are constants and Cg is the speed of sound given by
_ 1/2
C, = (dr/dp) (6)

where s indicates the differentiation at constant entropy.

wWhen a large distortion of computational cells is
encountered, additional viscosities are included in the deviatoric stress
components. They are devised to minimize hour-glass shaped distortion of
quadrilateral cell elements. This distortion is a consequence of the fact
that the quadrilateral cell used in plane geometry has eight degrees of
freedom, but that only six are accounted for in the basic equations that
provide resistance to these motions. In some codes these viscosities are

known as the triangular artificial viscosity. These triangular stresses are

_ 1/z . .
9., b3 A CS p (2 € ix ny) ("
_ 1/2 . .
qyy = b3 A Cs p (2 ny EXX) (8)
a,, = 3 by A’ Co P by (9)

. . i |




where bg is a constant. These stresses are added to the stresses obtained

from the constitutive equations described in the next section.

C. Conservation of Energy

The following expression of the conservation of energy
ignores thermal heat conduction. This is a reasonable approximation for the

time scale involved in stress wave propagation.

. e T+ e ) . -, ., N .
E (p + q) V\sXx € . syy Syt Sz £y 2 sxy fxy) (10)

where E is the specific internal energy, p the pressure, syy, Sxys and Syy
are the deviatoric stress components defined by
sij = oiJ +p (11)
where i and j stand for x and y.
2. Constitutive Equations
The present program contains two material models. They are a

standard hydrodynamic-elastic-plastic model for solids and a special model
for porous media such as soil and concrete. The former model was initially
developed for the description of metallic materials, but it has been
effectively used even for materials such as concrete in a certain range of

impact conditions (Reference 13).

In stress wave calculations, it may be necessary to permit
fracture of materials (say, spalling) during the calculations. An effective
representation of such a separation may be provided by letting the stress in
the cells along one side to reduce to zero. The algorithm is described in
Section IIB.
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a. Hydrodynamic-elastic-plastic model

.

In this standard model the stress tensor o¢jj is resolved into
the pressure and deviatoric stress tensors as follows (same as Equation
(11).

oij = 8ij ~ P-
The hydrostatic pressure p is described by a Mie-Gruneisen equation given by
P - f](p) +pTE (12)

where I is the Gruneisen ratio and fl(p) is written in terms of a polynomial

function:
f(p) =a(n-1)+a(n-1)2?+a(qg-1)°% , (13)
1 1" 2" 3
where n = p/p,, and py, = initial density.
The deviatoric stress components account for elastic

behaviors and are calculated by the frame-indifferent isotropic elasticity

equations (Reference 12),

»na

X
by = 2 e (14)

v
S

ij - %ij T %ik Skj T %kj Sjk

(15)

where Sj; 1is the co-rotational stress rate, p, shear modulus, ejk is the
e
component of the rotation tensor, and ejj are the elastic deviatoric strain

components defined by

€5~ fi5 (1/3) 1k 6ij . (16)




n plane geometry Equations (14) and (15) reduce to

éxx = 2" ey + 2 @ 8xy
éyy = 2p eyy + 2o syy
éxy = 2p€xy - ﬁ)(s'\-x - Sy—y) (17)

here o = @y = local rotation about the z-axis.
The transition from an elastic to a plastic state is

ietermined by the Von Mises yield function

glo. ) = - 2v%/3 . (18)

177 %1%
shere Y is the yield stress in simple tension. The material is elastic 1if
f < 0, and plastic if g = 0, whereas the condition g > 0 can never be
~ealized. In the plastic state it is assumed that the total strain rate is
he sum of the elastic and plastic strain rates and that the plastic strain

-ate is determined by an associated flow rule such that

€.. % €.. 4+ g . (13;
1) 1J 1J

~ .
i

. )
A\ag/aajj, (20)

In this formulation the plastic strain rate becomes normal to the yield
surface as expressed by Equation (18). This relationship provides an

sxpedient algorism for evaluating stress increments in plastic state.
b. Model for Porous Materials

Continuum plasticity has long been used for modeling the
mechanical behaviors of geological materials such as soils and rocks
(References 14 and 15). Recent models involve a complex combination of

mutiplastic potential surfaces and a nonassociated flow rule (References 16-

10




18). However, as the complexity of these model increases, so does the
difficulty of determining their material parameters. It is not uncommon to
find a model with more than two dozen adjustable parameters. With this many
parameters, their determination is rarely complete, particularly when

various paths are involved in loading, as well as in unloading.

The model in our code was originally proposed by Swegle
(Reference 19) as an extension of the hydrodynamic P-a model to include
shear strength in the description of porous materials including geological
materials. The most important feature of this model is its simplicity. Our
investigations (References 20-21) showed that as few as two to four free
parameters are sufficient to deal with materials such as metal and ceramic
powders as well as various types of soil. Other noteworthy features are:
(1) the description of overall stress in terms of the stress in solid
components and porosity, and (2) the use of associated hardening flow rule

to describe coupling between volumetric and deviatoric inelastic behavior.

The following is a summary of Swegle's formalism in

incremental form.

a. Stress

Effective stress components are determined by those of

the solid components and the solid volume fraction a as follows:

Ojj - —p6ij + sij (21)
p = ap = af(Vs,E) (22)
sij - asijs (23)

where a = Vg/V, the subscript "s" stands for the solid.

11
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b. Strain

Strain components are partitioned in terms of volume

components, i.e.,

dcijs = (des/(ie)dei‘j (24)

where

de = dV/V and des = st/Vs . (25)

It can be shown that, if the above partition of the strain components is

used, then irrespective of deformation modes,

deiJs = dejj[l + (da/a)(dV/V)" ') . (26
where
deij = atij - (de/3) Bjj . (27)
c. Elastic regime

Elastic response is formulated by use of the P-a model

and a frame indiffernet isotropic Hooke's law. That 1is,

(da/dP)elastic = [1/h?(a) —l]/Ko , (28)
where

h(a) =1+ [(1 - a).(1 - do)}(Co/Cso - 1) (29)

Kso = so0lid bulk modulus at zero pressure,

CorCsp = sound velocities at zero pressure,

dsjjs = 2Ggdejjs *+ (wjkSkj-wkjsik)dt, (30)

12




d. Plastic Regime

Plastic state of the material is determined by a 'yield
function similar to that of the perfectly plastic solid described in the

previous section. That is,

g = £(J,, JJZ , @) (31)
where
Jl = Ok T -3p , (32)
and
o 1/2
JJ—Z (/2 s s . (33)

The material behaves elastically if

g =<0 (34)

and plastically if

g-0 . (35)

Then, the plastic strain increment is prescribed by the associated flow rule
such that

de . = deS . + de?. (36)
1J 1) 1)
P

dell ;= dx (ag/d0, ) (37)

where the superscript describes the state of the materiel.

13




There are many potential yield functions including the
well known Mohr—Coulomb and Drucker-Prager models for the description of
porous materials. Based upon our experience (References 20-21), the present

» code contains only the elliptic yield function described below. But, we
also tested a lemniscate function for future study. Results with the latter

function are given in Appendix A.

e. Elliptical Yield Function

2

= [[p-pp@) 7 oy@] + [[395)77 Y]<a>]2 -1 (38)

where
Pp(a) = (pi(e) - K(a)) / 2
Pl(a) = (pp(a) + K(a)) / 2
K(a) = Kg + cpp(a)
Yi{a) = Qx(1 - a) Pp(ﬂ)
ppla) = (y/B) [(1 - @) 28/% - ¢, (1 - ao)"2P/3]

and ¢, Qy, m, Y, B, and cp are constants.

These selections have been made based upon the
observations (References 20 and 21) that they describe the general features
of yield surfaces which are observed experimentally and that their
parameters can be understood through mechanistic interpretation of flow
mechanisms. For example the current form of pp(a), which is the
hydrostatic inelastic compression of porous material, is determined based
upon a spherical pore-collapse model. Detailed descriptions of this model

are found in Reference 20.
3. Boundary and Initial Conditions

Boundary conditions in a layered system may be divided into two

distinct categories: external and internal boundaries. Typically, external
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conditions are specified in terms of stress or velocity components fog all
bourdary points. Common examples are a free surface or a smooth rigid wall
(zero velocity in the direction normal to the wall surface). Normally,
boundary conditions at an internal interface are the standard continuity
conditions for normal stress and velocity. But, they could become very
complex if interfacial motions such as sliding, opening, and closing are
included. In the current code, only the separation of an interface in one
spatial direction is treated. It is an approximate representation through

use of the crack opening described in Section IIB.

Initial conditions must be given for all dependent variables to
determine the subsequent motions. That is, the initial state of stress and

strain, as well as geometry, must be known.
B. COMPUTATIONAL PROCEDURES

In a finite difference approach one starts with the governing
differential equations and approximates them by appropriate discrete
equations based on computational grid or mesh. Our Lagrangian explicit
scheme is derived basically from that found in several general-purpose large
codes (References B-12). Therefore, no attempt will be made to duplicate
excellent discussions found in these references. We will limit our remarks

to a description of the inner working of our code.
1. Integration of Governing Equations

Figure 1 illustrates our finite-difference grid arranged in a
staggered rectangular array indexed by i and j. Kinematic quantities
dealing with motion such as positions are defined at integer locations. The
remaining quantities such as stress, strain, and internal energy are
calculated at half-integer points as averages over a cell volume or a
surface area. For example, Xj,j represents a Lagrangian position at time,

say t = tI and 0j+1/2, i+1/2 @ stress component for the quadrilateral cell

having corners at (j,1), (j+1), i), (j+1l, i+1), and (j, i+l).

-
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Lacrangian Coordinate
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x, X, and X

i1 j j*1
Lagrangian Coordinate

Figure 1. Computational Grid Showing Locations of Cells for

Comput ing Kinematic and Equation-of-State Variables

The integration of the dynamic equalions 1is based wupon the
standard leap-frog method and proceeds as follows. Initially or at time
t - t{h, all quantities are defined at all points by the initial conditions
or previous calculations. Computations to advance one time step from thn
te tn*l is done in four steps, as illustrated in Figure 2. First, the
momentum equation, Equations 3 and 4 are solved for the new acceleration at
t = th, If gj,i were the acceleration being calculated, the quantities
required are specified at neighboring four half-integer points. These
points comprise a computational cell for motion variables as illustrated in

Figure 1. Then, the resulting acceleration 1is used to calculate the new

.n+1/2 n+1} )
velocitly and position, Xj, i X3j, i by using time-centered integrations.

S

Computational

Computational




p———meneeeeeelped At initial time, all quantitites are known

COMPUTATIONAL SEQUENCE

v

Calculate the new acceleration by
the momentum equation

N
X. .
Jrl

Y

Calculate the change in velocity and position
by time-centered integrations

*n+1/2 and xn+1

J,1 J.i

y

Calculate the change in density and strain components
by the equation of mass conservation and
displacement-strain relationships

n+l n+l etc
Pij-172, 1-172 * %5-172, i-172 :

Y

Calculate the new internal energy, stress components,
and porosity, etc., by solving coupled simultaneous
equations for the conservation of energy
and the constitutive equations

n+1l n+l n+l

Pi-1/2, i-1/2 * Sj-1/72, i-1/2 ' Ej-1/2, i-152 + ete

Y

Calculate the next time step by using
the Courant stability criterion

-n+l
At

Figure 2. Computational Sequence for One Time-Cycle
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H1/2 o gnmt/2  am (39)
Jsl Js1 Js1

A VAT (40)
Jsl Jsl Jsl

where AtD - th+l gnd Atn+1/2 = gn+1/2 _ n |

The order in which computations are performed is such that at the

n+l
time the position of Xj,i 1s computed, the positions and velocities at the

other vertices of the quadrilateral cell having smaller j and i are already

known. A schematic of the order is shown in Figure 3.

im1 i i1

i1 4 4 )

o~ Points already
advanced to t"*!

A 4

' '
) 1
i 4 -+ # e Point being
| ! advanced to t"*!
|
!
| i )
f | 5
i-1 Y %L{ ﬁLi & o Point not yet
! | : advanced to t"*'

Order of
Computation

Figure 3. Schematic Representation of the Order of Computation
In the second step, we use those new positions at t = tn+l oty
calculate the new density and strain components froa the equation of mass
conservation and displacement-strain relationships, respectively. These
quantities are calculated as averages over a computational cell shown in

Figure 1.
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In the third step, using the new density and strain components,
the energy equation and constitutive equations are simultaneously solved for
the new stress components, internal energy, and other constitutive variables
such as porosity. Depending upon the complexity of the constitutive
equations, these simultaneous equations may involve a system of nonlinear
coupled ordinary differential equaztions and require a lengthy iterative

scheme to find solution.

The fourth step is a preparation for the next time cycle and
evaluates the next time 1ncrement based upon the Courant stability

condition,
At -t s B/C_ (41)

where Ax :© the minimum cell dimension.

In our program, this equaii-r is moditied to include the effect of

the artiireial viscosity as fellows (f-forence 120,

At 7 min {Ax/Cef(l - 3f37 (42>

where C,. is the locul sound speed.

Hoeundary Condition:

The procedure described in the previous section applies to a point
in the interior of the homogeneous Lagrangian grid. At exterior or interior
boundaries the algerisme must be modified. Currently, only a limited number
of boundary conditions is provided i1 our program. 1wo kinds of exterior
boundary conditions are considered.  These are a rigid but smooth wall and a
free surface. A rigid wall (or boundary) is represented by setting the
velocity of mesh points in a prescribed direction to zero. Butl no constraint
is imposed on the motion of the mesh points in the direction parallel to the

wall. At & stress free boundary, since the stress components are calculated
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as averages over a computational cell, a massless "phantom” zone is created
Yeyond the "“real" zone. The coordinates of the outside vertices of the
phantom cell are arbitrary and are normally set equal to the coordinates of

the points on the real surface.

For interior boundaries the present version of the code cannot
treat sliding internal interfaces. Therefore, mesh points at an internal
boundary are considered to be common to both sides of the interface and
have the averaged mass of the adjacent materials. However, an effective
representation is provided for a separating interface in one direction by
letting the stress in the cell along one side reduce to =zero. This
procedure can also be used to represent approximately the creation of a
crack in the interior of the material. The behavior of cracked material is
simulated by adjusting the stress in the cell so that there is no normal
stress across the crack. But, since a Lagrangian cell having cracks is not
allowed to separate into several pieces, the stress in it is adjusted to the
value appropriate to such cracked material. This is achieved by the

following stress adjustments.

XX

o + 0 + Al
Yy Yy

o + 0 + AQe
zz 22

Oy * O (43)

where A is a Lame’s constant and 8¢ = - oy /(A + 2p)
C. INPUT AND OUTPUT

Since our computer program is a special purpose code, input and output
data are kept to a minimum amount necessary for solving two-dimensional

stress wave propagation through layered systems. The input data consist of

20




general running end printing instructions, materials data, grid leyout data,

and initiel conditions. The instructions for the input data preparation are
described in Appendix B.

Because of our emphasis on load profiles, the current output are
limited to stress components, positions, and particle velocities. However,

the program can be easily modified to print other variables including time

histories of dependent variables.
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SECTION 111

SAMPLE CALCULATIONS

Two types of problems were considered for samplc calculations to test
the computer program. The first 1is the calculation of stress wave
propagation in two of the model tests described in Volume 1 of the final
report. The second is the analysis of the model testing of a more
realistic, but hypothetical buried structure. However, since few dvnamic
data exist regarding the behavior of the model sand and microconcrete, the
calcula.ions were intended only for generating the qualitative features of

model behaviors.

A. SCALED MODEL SLABS

Two experiments were selected for sample calculations. They are M014
and M022. The major goals of these shots were: (1) to demonstrate the
capabilities of producing a selected failure mode, say, spalling, by
tailoring shock pulses and (2) to study the influence of a protective layer
on failure modes as well as on shock profiles (magnitude, time history,
etc). In these experiments, the dynamic lvading was modeled by impact of a
projectile fired from a gas gun and tailored by the projectile size, speed,
material, mass, etc. Al idealized tes! configuration used for the

simulation 1s shown in Figure 4.

Materials properties used for simulation of these tests are summarized
in Table 1. However, since no systematic experiments were conducted for the
purpose of generating dynamic material data in this phase of the research
program, no attempt was made to optimize these properties to fit
experimental results. Elastic properties are those found in standard
handbooks. Inelastic properties of Lexan®, aluminum, and microconcrete were
delermined using the von Mise criterion and stress for tensile failure
(Reference 22, The use of the perfectly plastic model for the concrete was
solely due 1o the lack of dynamic data. When dates becomes available, it

will be replaced by the porous model. The material constants for the sand

[x]
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Figure 4. Test Configurations Idealized for Numerical

Calculations
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TABLE 1. MATERIAL PROPERTIES OF ALUMINIUM, LEXAN AND CONCRETE

aluminium Lexan Concrete?
Bulk Modulus (Gpa) 80 3.47 13.1
Shear Modulus (Gpa) 30 0.90 9.4
Density (kg/m?3) 2780 1190 1080
Sound Speed (m/sec) 6560 1980 3510
Yield Strength (Mpa) 75 7 28

*Cunningham, C. H., Townsend, F. C., and Fagundo, F. E.,
"The Development of Micro-Concrete for Buried Structrures,"”

University of Florida, Gainesville, 198G.

were generated through use of Hugoniot data (Reference 23) and our data on
wave arrival times in the pressure range of 1-5 kb. Figure 5 compares of
the Hugoniot data with those gemerated by computer simulation of shock wave
propagation in the model sand. For the particle velocity of less than 0.2
mn/ psec, waves were too dispersed to define a meaningful shock front. The
calculated Hugoniot at 2 kb was fitted to that estimated from the wave

arrival times.
1. Shot M0 14

Figures &-10 illustrate seleclted results from the simulation of
Shot MO 14 where a concrete slab was shock loaded without a protective sand
layer (see Figure 4(a)). The aluminum layer was used to prevent impact
damages on the concrete surface. The length of the projectile was
arbitrarily reduced to one half of the original length to save computer
time. This change has no influence on the early-time solutions shown in
Figures 6-10. In this simulation the separation of the interface between
aluminum and concrete was provided by using the procedure discussed in

Section TIR. Also, the edges of the plates were assumed to he free.
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Figures 6 and 7 show the contour maps of normal stress in the
longitudinal and transverse directions respectively. The prog}éssive
propagation of shock wave from the impacting interface is typical of wave
propagation in two dimensions. However, the stress patterns in the thin
aluminum plate rapidly become very complex because of wave reverberations
between the two interfaces: Lexan®/aluminum and aluminum/concrete.
Nevertheless, as shown in Figures 8 and 9, the stress history at each
interface forms an expected simple "triangular" profile. Characteristic
quantities of the loading profiles, e.g., peak stress and decay time are
governed not only by two-dimensional wave interactions, but also such
parameters as impact velocity, impact geometry, elastic constants, etc. The
very early time oscillation in the history of normal stress at the second
interface is a normal numerical artifact caused by a sudden increase in the

rigidity of material, i.e., concrete.

The appearance of strong tension in the concrete slab at late
times in Figures 6 and 10 is & well-understood phenomenon and was caused by
the reflection of a triangular compression pulse from its back free surface.
When the tensile siress exceeds the ultimate dynamic strength, e fracture
occurs at that point. If the fracture extends over a wide region as shown
in Figure 6, then & layer of material may even split away (spall) from the
rest of the material. 1In localized loading, the spalled material often

takes the shape of a cone because of the curvature in the wave front.

Unfortunately, since our fracture model does nct describe the
process of dynamic fracture (Reference 24), we cannot make a quantitative
comparison of the caslculations with the experimental results. But, there is
a gqualitative correlation between the triangular region of large tension

found and the spalling observed in the test (see Figure 10 in Volume 1).
2. Shot M022

Calculations of Shot M022 are shown in Figures 10-13. The major
goal of this test was to examine the influence of a sand layer on 1loading

profiles and the modes of failure. However, in the simulation, the 1]
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thickness of the sand layer was reduced from 3-inches to 1.18-inches (3 cm)
to see wave propagation in the concrete plate within two hours of coﬁﬁuting
time on our IBM 370-168. This reduction was dictated soley by limited

computing funds.

Characteristic features of wave propagation through the model sand
layer are illustrated in Figure 11 in terms of the histories of the normal
stress oy, &at several successive points on the x—axis. Two noteworthy
features of these histories are the rapid attenuation of peak stress and the
dispersion of loading profile. In general, these features were generated by
complex two-dimensional wave propagation through the model system. But, the
most critical parameter is the slow wave speed in the model sand. In the
pressure range of our interest (less than 5 kb) this speed is only about
one- tenth of those in aluminum. This results in a strong lateral unloading

of the foward-moving shock from the free surfaces of the projectile and the

aluminum plate.

These histories indicate that by the time a wave reaches the
surface of the concrete slab, the load is no longer a triangular shock
pulse, but rather a step load having a time scale comparable to the
fundamental period of the slab, or longer. The fundamental period
calculated by use of the SAP IV program (Reference 25) was about 140 psec.
This means that the sand layer very effectively transforms g highly
localized shock pulse into a long-iime structural loading. Therefore, if
there were any failure in the slab it will be one of the structural modes
such as bending. Figures 12 and 13 show another view of +the above

described transformation in terms of stress contours.

Although the wave calculation was not carried out long enocugh to
observe a tensile failure caused by bending, & bending failure consistent

with the calculation was observed in the specimen recovered after the test.

One additional conclusion that can be drawn fron the above
described results is that the wave analysis of the scale model testing is an

effective wmeans of investigating both early-time stress wave response end
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"late-time"” structural response in a unified fashion by directly focusing on
shock waves that excite the layered system. We will illustrate this

advantage in the next example.
B. A BURIED MODEL FRAME

The goal of this exercise was to demonstrate the potential use of the
program to analyze a more complex model than a plane slab. Of particular
interest was the applicability of the progran for investigating intermediate
or "long-time” structural response in a model structure subjected to a shock

loadi.g.

The geometry of the problem we considered i1s shown in Figure 14. It 1is
essentially Shot M022, but modified so that the model structure is situated
in a more realistic environment. However, the selection of dimensions was
influenced by external factors such as the cost of computing time and the

size of the current program. The soil layer was further reduced to 1 cm.

Since early timeresponses: are similar to those found for Shot M022,
only late time stress contours were analyzed to focus on structural response

result from a stress pulse propagated through a layer of protective soil.

Figures 15 and 16 show the distributions of normal stress at three
successive stages of wave propagation. Complex profiles in the aluminum
plate and simple wave profiles in the soil layer were very similar to those
found for Shot M022. In spite of a relatively thii o0il layer, there was a
subtantial attenuation and dispersion of waves c >d mostly by lateral
unloading. As in the case of M022, the unloading w determined by the wave
speed in soil which is an order of magnitude slowe. than those in aluminum
and [>~an®. When the shock pulse reaches the concr = structure, it becomes
A siw:y varving load having time constants comparable to, if not longer
than, ‘he period of the first structural response mode. This load, in the

first order approximation, is a distributed normal thrust.
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Therefore, if the frame is excited in a simple structural mode, the
mode can be identified by examining the pattern of stress distribution. For
instance, it is believed that the patterns of tension and compression at
45.7 ppsec (last contour maps) correspond to the shape of the fourth
fundamental mode (symmetric bending mode) of the frame shown. The
alternating pattern of tension and compression in Figure 16 and the
corresponding compression regions in Figure 15 are exactly what is expected
from such a bending response. The period of the fourth mode, according to
the SAP 1V program, was about 53 psec. However, no attempt was made to
obtain a gquantitative comparison because of the difficulty in duplicating

the identical dynamic load for the SAP program.

Nevertheless, an important conclusion of this calculation is that model
testing combined with numerical simulation is a cost effective means of
generating data base for analysis and aid in the design of protective

structures under close-in detonations.
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SECTION IV

CONCLUSIONS

In the foregoing, we described (1) the successful development of a two-
dimensional Lagrangian finite difference code for the wave analysis of the
scale model testing of buried structures under dynamic loading and (2) the
development of constitutive relations for the description of porous
materials such as soil and concrete. We considered three sample
calculations involving concrete slabs representing actual test
configurations and a buried model frame. Results of the former agreed with
the test results regarding failure modes, and provided a rational basis for

interpreting them in terms of load profiles at concrete structures.

Some of the advantages of the wave approach are:

. regimes of both stress-wave response and early structural response

can be analyzed in a unified scheme

. the analysis directly focus on the stress waves that excite

structures as well as shock-transmitting layers

Other noteworthy features of the results are:

. for the configurations tested here the slow wavespeed in sand
layers is the major cause for the attenuation and dispersion of
ground shock that changed the mode of failure from spalling to a

structural failure by bending.
® an aluminum plate, because of its fast wavespeed relative to sand,
made an effective layer of spreading loads over a wider area of

! sand. This phenomenon may be of some interest in the design of

protective structures by using the concept of layered systems.
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APPENDIX A

GROUND SHOCK PROPAGATION
IN VARIOUS SOIL TYPES

This appendix discusses the capability of the porous model to describe
many differenlt kinds of porous materials by appropriate choice of the
functional forms. Presently, the model involves two critical functions that
determine the 1inelastic behavior of porous materials. They are the P-a
relationship and the yield function (see Section II.A). However, since the
piesent  P-a relationship is determined by a mechanistic model to minimize
tie numbeir of free parameters, the function to be selected is only the yield

function.

There are many suggestions for the yield function {some models involve
mo:«  than one yield function) to describe the inelastic behavior of porous
materials (Reference 15). In this study we chose a lemniscate function and
evaluated the predictive capabilities of the model by conducting a
parametric simaulation of the scaled data on ground shock propagation in five
s¢:i1 types (Reference 267, These soils were characterized as: (1) loose
density  sand, (20 mediun density sand, (3) very dense sand, (4. sandstone,
29N

and (5Y silty sand. The shock data is said to be a compilation of meore than

oy hundered explosion tests over the past 35 years.

Tt~ behaviors of  the five soil types were medeled by appropriate
se:lections of the material parameters in the lemniscate function illustrated

in Figure A-1 and defined by

el

CO IS A(a:]‘ . [(3.1;)”"7 / B(_a)] - cos(x8 ; 24 (A.1}

N (A.2)
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B(a) = cmcosm(:a / 2) + Al(a) (A.3)

po(a) = (v/8) [(1-a) 7 - 1 - )77 (A.4)

Cos Cps M, B, and Y are constants.

The specific soil properties associated with the yield function are
summarized in Table A-1. The relative importance of different parameters is
difficult to determine, but four of them are found to govern characteristic
features of the ground shock propagation in the five soil types. They are
a, (or the initial porosity that determines the sound speed ratio Ct,/Cgo, D
and Cp that control the maximum shear strength as illustrated in Figure A-1,
and ¢ that determines the initial slope of the yield function. In Suh’s
formulation (Reference 27), ¢ is the slope of the Mohr-Coulomb failure

surface.

Other material properties that are associated with the Mie-Gruneisen
equation for the solid components of these soils are assumed to be the same

for all the soil types and are listed in Table A-2.

The parametric simulations of buried explosions were conducted by using
the gas expansion model developed by Chadwich et al. in Reference 28 . In

this model the pressure of the exploding cavity is given by
. -3r
p = plasa) (A.5)

where p, is the initial pressure when the cavity radius was a,, a the
current radius, and r a constant. The explosive parameters were obtained
from References 28 and 29 and are summarized in Table A.3. Selected results
of the simulations are shown in Figures A-2 - A-5 and Table A-4. In these
calculations, however, no systema.ic attempt was made to optimize the

materials properties to obtain the best fitting to the experimental results.
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TABLE A-1.

Parameters

+(degree)
Cy(MPa)

Cm

Y(MPa)

r)

-

PARAMETERS OF THE LEMNISCATE YIELD FUNCTION

loose

sand

0.

0.05

5

[$S]

medium

sand

0.59

0.05

53

0.1

1.2

[pS]

dense

sand

0.68

0.05

53

0.1

"o

sand

stone

0.78

0.05

[R%]

6

0.95

silty

sand

0.78

0.5
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TABLE A-2. EQUATION OF STATE

Properties loose medium dense
sand sand sand
Initial porosity (%) 50 41 32
Sound-speed ratio (Cy,/Cgy,) 0.05 0.08 0.15
Density of Solid (kg/m?3) 2700 2700 2700
Shear modulus (Sclid)(GFa) 24 24 24
Bulk modulus (Solid)(GPa) 39 39 39

¥The pressure-volume equation for solid:

v
p éa) = 39 (—E— ~ 1] + 60.5 j— -1 , in GPa
vso v

sand

stone

22

0.2

2700

24

39

silty

sand

22

0.2

2700

24

39




TABLE A-3. EXPLOSIVE PARAMETERS

Explosive type:

Charge Weight, L:

Radius of cavity, a:

Boundary pressure, Pg:

The constant, r:

Scaled range W:

S, ]
o

TNT

512 kg

42 cm

1 m/kg!/ "

8 m
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PEAK STRESS DECAY
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Figure A-4. Peak Stress Decay in Time at a Fixed Stand-Off
Distance. Experimental Data are Only Shown for
a = .78 (L.S.) by Broken Lines
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PEAK VELOCITY DECAY
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Figure A-5. Peak Velocity Decay in Time at a Fixed Stand-Off
Distance. There was no Agreement Found Between
Calculations and Experimental Results
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TABLE A-4. CALCULATED ATTENTUATION COEFFICIENT, n

Sand Type Initial Peak Stress Level n
a, (MPa)
Loose sand 0.50 1000 - 30 3.52
30 - 5 2.80
Medium dense sand 0.59 1000 - 60 3.31
60 - 7 2.53
Dense sand 0.68 1000 - 60 3.00
60 - 10 2.23
Sand stone 0.78 1000 - 100 2.44
(High shear 100 - 35 2.05
strength) 35 - 20 1.05
Silty sand 0.78 1000 - 80 2.33
(low shear 80 - 20 1.68
strength)

Figure A-2 shows a comparision of calculated attenuation rates of peak
stress with those summarized from the experimental data. The calculated
trend of the attenuation rates is in agreement with that discussed in

Reference 26, involving parameters such as porosity and seismic speed.

A similar agreement 1s found with the results regarding other
parameters: attenuation coefficients (Table A-4), attenuation rates of peak
particle velocity (Figure A-2), and stress decay (Figure A-3). However, no

good correlation was obtained with particle velocity decay (Figure A-4). In
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hese figures, the stress and velocily decays that characterize pulse
awrofiles are defined by Drake and Little as follows (Reference 26). First,

:he arrival time t, is defined by

~shere R is the distance from the explosion and ¢ is the seismic wave

propagation velocity. Then, the stress and velocity decays are defined by

o(t)

1

(- (
P, expl rt/g ) (A.7)

vi(t) vo(] - ﬂt/ta) exp (—pt/ta) (A.8)

where op and vp are the values of the peak stress and peak particle velocity
and y and § are time constants. They find that for most applications these

time constants mav be approximated by y = 1.0 and $ = 1/2.5.

They also found that the rise time of these wave forms is typically
about one/tenth of the travel time to the target point. The corresponding
calculated results varied from 0.06 to 0.17 depending upon soil types and
locations. An . ccurate evaluation of the coefficient is difficult because
of the ambiguity in the definition of travel time for a dispersed wave
profile. But, the calculated results are consistent with the reported

empirical value.
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APPENDIX B
INPUT PREPARATION

Four sets of input data are required to run a problem. They are, in
the order of appearance, general running data, materials data, cell and
coordinate layout data, and velocity data. As an example the complete input
deck for the calculation of the buried frame is shown in Figure B-1. Any
consistent system of units can be used for the calculations. Some popular

systems are shown in Figure B-2 (Reference 9).
A. RUNNING DATA

Line 1 (215, F10.0)

Columns Variable
1 - 5 frequency in cycles for printing selected
solutions
6 - 10 the maximum number of computing cycles
11 - 20 iritial time increment

Line 2 (515)

Columns Variable

1 - 5 boundary condition

-1 - Fixed y-velocity at i = ipjp and ipgay

-2 = Fixed y-velocity at i = ipip only
-3 = All free edges
-4 = Fixed y-velocity at i = ipip,

Fixed x-velocity at j = jpip and Jpax
-5 = Fixed y-velocity at i = ipj, and i,

Fixed x-velocity at j = jpin -
6 - 10 number of blocks in the problem

11 - 15 number of materials
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30 450 .1E-06 1 General
-2 7 4 1 running
.3470E+11 J data
116 F-+01 .6BIEQR .904E10C . 198F 1 A 1
q. .1 0.02
300000.
.800 EI12
.278 EO1 .T50E0Y .300E12 .65E£T0¢1
4. . 0.02 Materials
3.900E11 6.05E11 1 data
2.7 7.5 EOB 2.40E11 512799.
4. .1 0.02
.08 .59
.131E12
.208E0] .282E09 .940F11 .351E06
4. .1 0.02
1 15 0. 2.8 2.8 0. 1
1 il 0.0 0.0 2.0 2.0
15 16 2.8 3.0 3.0 2.8 1
1 11 0.0 0.0 2.0 2.0
16 21 3.0 3.7 3.7 3.0 2
41 0 0. 5.0 8.0 ’ Cell and
21 31 3.7 4.7 q.7 3.7 3 coordinate
! 41 0. 0. 8.0 8.0 lavout
3] 61 4.7 7.7 7.7 4.7 O
20 4] 5.0 5.0 8.0 2.0 |
61 3.7 7.7 7.7 4.7 4 !
21 2c 4.0 4.0 5.0 5.0
31 4} 4.7 5.7 5.7 4.7 4 J
] 21 0.0 0.0 9.0 q.(
i 16 15000. 7 Velocity data

Figure B-1. Input Data for the Calculation of the Buried Frame
Shown in Figure 14
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Quantity

Time

Length

Mass

Force

Energy

Energy Density
Power

Density

Fressure

Figure B-2.

c.g.s.

cm
gm

dyn
erg
erg/gm
erg/s
gm/cm’

dyn/cm?

Sets of Units

c.g. us

kS
cm
gm
T dyn

T erg

Mbar cm3/gm

T erg/s

gm/cm?
Mbar

61

Pa

S. I f.p.s.

s s

m ft

kg slug

Newton 1b

Joule ft.1b

J/kg ft.1lb/slug

Watt ft.1lb/s

kg/m? slug/ft?
1b/ft?

Consistent Systems of Units That Can Be Used for
Code Calculations
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Figure B-3. Definition of Lagrangian Positions in a Quadilateral Block




16--20

21 - 25

MATERIAL DATA

Line 1 (4F10.0,

Columns
1-10
11 - 20
21 - 30
31 - 40
41 - 45

line 2 (4F10.0,

Columns
1 -10
11 - 20
21 - 30
31 40

41 - 45

Line 3 (3F10.0)

Columns
1 - 10
i1 - 20
21 - 30

velocity initialization

1 = velocity initialized for all i up to
an interface j value for a projectile
impact

-1

i

velocity initialized for all i and j from
an interface value to jpay-

maximum value of j in initial calculations.

Variables
a] in Equation (14)
ap in Equation (14)
az in Equation (14)
I' in Equation (14)

1 = porous material

Variables
specific density
vield stress
shear modulus
longitudinzl sound speed
fracture indicator
5 = fracture in the x-direction

6 - fracture in the y-direction

Variables
quadratic viscosity constant
linear viscosity constant

triangle viscosity constant
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Line 4 (2F10.0)

Columns
1 - 10
11 - 20

Line 5 (F10.0)

Columns
] - 10

Variables
Cto / Cso, = sound speed of porous material ’
sound speed of its solid component

an

skip this line if the fracture is not
considered.
Variables

fracture strength

Repeat Line 1-5 as many times as the number of materials in the

problen.

C. GRID LAYOUT DATA

Line 1 (215, 4F10.0, 15)
Columns
1 -5
6 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 55

Variables
Jl
j2
XA(1)
XA(2)
XA(3)
XA(4)

material number

where jl and j2 define Lagrangian x-posilions of a quadrilateral block

as shown in Figure B.3.

XA(n) are x-coordinates of the corners of the

block read in counterclockwise direction starting with pint of smallest

j, 1 values.
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Line 2 (215, 4F10.0)

Columns Variables
1 -5 il
6 - 10 12
11 - 20 YA(1)
21 - 30 YA(Z)
31 - 40 YA(3)
41 - 50 YA(4)

where il and 12 are Lagrangian y-positions defined in Figure B-2 and

YA(n) are y-coordinates of the corners of the quadrilateral block.

C. VELOCITY DATA

Line 1 (315, F10.0)

Columns Variables
1 -5 minimum 1 value initialized at the velocity u
6 - 10 maximum i value initialized at the velocity u
11 - 15 interface j value for a projectile impact
16 - 25 initial velocity of a projectile
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APFENDIX C

LISTING OF COMPUTER FROGRAMS
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inPLICIT REAL®*B (A-k,0-3)
CCHAON/T/X(JOOO),1(3000),10(3000),!D(JOOO),5(3000),!(3000)
o.:(sooo),D(JOOO),SXX(JOOO),5!!(3000),522(3000),rX!(JOOO)
o,T11(3000),IXX(JOOO).122(3000),9(3000),E(JOOO),Y¥(3000),
'LVV(3000),EXX(JOOO),E!Y(JOOO),222(3000),EXY(3000),ALI(3000),
¢14¢3000)
cosnou/zg5/£u5TC(0),EgSTD(o),EQSTS(6),BHO(6),¥C(6),uaU(6)
¢,CLIN(E) ,C.5u(6),TEIL(b),SP(6),EuSTG(6)
COHBOI/GEN/UZBEO,DT,DTI,DTH,IJBU&D,JBAX,JHIN,KHAX,KBIN,KCHEK
CCABCHM/IND/ BFE(10)

CUNMON/PSE/ TSR {10)

CONMON/POR/ ALP (3000) ,SXIS (3000),SYYS (3000),5S2Z5(3000),TKXS(3009)
',711543000),TzZS(BOOO),TXIS(JOOO),PS(3000),2VVS(3000),BXXS(JOOO)
+,EYYS (3000 ,E22S(3000),EX¥S (3000) ,EJ(3000),ALPO(6),IPOK(6),CTCS(6)
DINEMSION XL(IOO,IOO),YL(IOO,lOO),HH(IOO,lOO),LVAB(!OO,lOO)

JSIZE=15000
JXx=130
KXi=1CJ

BREAU (1,2222) NWw,NMARX,DT
«es. PCBMAT(215,E10.3)
eBiTE(3,2223) NN,NBAX,DT
<eJ) FORMAT (1X,°NN=',13,3X,°NAAX=",15,3X,'DT=",E12.5)

CALL LAYOU1 (JSIZZ,JaX,KXX,XL,YL,AN,LVAR)

. GT.lMAK) CALL EXIT
CALL SWLEP(JSIZE,JXX,KXX,X.,YL,MH, LVAR)

LVI=LVAR(11,2;
LVZ2=_VAE{lb,Z;
LV3=LVAR(21,2)
LVu=LVAB (26,2
LYS=LVAu (31, Z)
TIME=TINZeD?
Co. JRITE(3,1331) §,TIME,P(LV1) EVV(LV1),ALP(LV1),SXX(LV1)
CUe  +,S:Y(LV1),P(LVZ),EVV(LV2),ALP (LV2),SXX (LV2) ,SYY (LV2)
L. WolZE(9,1030) N,TIME, TXX(LV1) ,TXX (LV2),TXX(LV3) ,TXX(LV4), TXX(LVE)
< #rITE(Y,1030) N,TIME,TiX(LV1) ,TXX{LV2),TXX(LV3),TXX(LV4),TXX (LV5)
. »SITE(3,1030) N,TIFE,P(LV1) ,EBVV(LV1),ALP{LV1), XD(LVY) ,EJ(LVY)
wiITE(y,1030) K,TIRZ, TXX(LV1) ,TXX(LV2),TXX(LV3) ,TXX(LVY4),TXX(LVS)
1031 POBEMAT(iS, 11511, 4)

C---TAPz o FGE N,11BE,DT

w3172 (8,811) N,TINML,DT
<11 FCSMAT(I5,2E10. )

(S B

1F (M. BE.NNN) GO TO 951

WSITE (3,2224)
w_c<v FORMAT (3X,%0',3X,°'K"',2X,*LVARN*, 11X,'X", 10X, XD, 9%, *TXX",

X, *TYY*,12L,'P",9X, 9 IXY*,9X, *SXX*,9X,*SYY",8X,ALPA',//)
EbN=MUN+NN
IF(N.LT. 145} GO TO 951
DC 950 K=1,KCHEK
DO 920 J=1,JHAX

LYARB=LVAB(K,6J)

IP (LVARN.LE.OQ) GO TO 920

IP(N(LVARYN).LE.O.AND.J.EQ.1) GO TO 920

¥BITE (3,1040) J ,K,LVARN ,X(LVARM), XD(LVABM),TXX(LVARN)

*+,TYY (LVARN) ,P(LVARS),TXY(LVARY) ,SXX(LVARS) ,SYY (LVARN) ,ALP (LVARN)
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---DISK 9 POR ¥,J,K,X,Y,XD,YD,P,E
LISK10 POE K,J,K,EKX,PYY,EXY,B2Z,ALFA,EVV
DISK1} POR M,J,K,TXX,TYY,TXY,TZZ,SXX,SYY,S22

WEITE(9,9%1) ¥,J,K,X(LVAER),Y (LVARY), XL (LVARK), YD (L7ARN)
+,P(LVARS) ,E (LVARN)
s11 POBRAT(315,6E10. 3)

WEITE(10,910 N,J,h,EXX(LVARM},EYY(LVAE®) ,EXY {LVARN),
+EZZ (LVARN) , ALPA (LVAEN) ,EVV (LVALR)

[N T PN S o o Y N N S

WeiTe (2, V00 »,J0,K, 3 (LVAENR), Y (LVAEN) ,TXX (LVARS),TYY (iLVAEN),
¢TZT (LVAaM) ,TXY (LVAEN)
1111 PCEBAT(5I5,€E10.3)
Lo WBITE (10,10141) N,J,K,X(LVARN) ,Y (LVA&M, ,XD {LVAEN),P(LVABN),
Coo ¢TXXYLVARM) ,TYY(LVAEN)
¥¢J3 CC’ TIMWJE
JZ) CCHTINUE
9Y<1 CONTIMUE

JIb=01
DT=UMIN1{0.9*DTW,DNAXL (1. 2%DT,0.035%DTW))
DTN=2.5%{DT+DTN)

1P {4T-3T1.1.E-12) GO TO 100

WIITE (3,1920)

1520 PCEBAT(1X,*STABILITY')
1030 FPOEMAT (I5,7E10. 3)

1,:) FORMAT({315,2X,10E12.5)

4

™MW
P

L

SUSBOUTINE LAYOUT (JSIZE,JXX,KXX,XL,YL, 58, LVAR)
IBPLICIT REAL*8 (A-H,0-2)

CURMUN/T/X (3007) ,¥(3000),XD({3000),1ID(3000),8(3000),A(3000)
+,2(3000),D(3000),5SXX(3000),SYT{3000),52Z(3000),TXY (3000)
+,TXX(3000),TYY(3000),T22(3000),P (3000),E(3000),YY(3000),
+BVV (3000) ,EXX (3000) ,EYY(3000) ,B2Z {3000) ,EXY (3000) ,ALF (3000) ,
+IH(300))

CCBBON/ELS/EUSTC(6) ,EQSTD (6),EQSTS (6) ,RHO (6) , YC (6) , UNT (6)
¢,CLIN{0),CyS2(6),TRIQ(D) (SP(6),BQSTG(6)

CCBABON/GEN/UZERO,DT,DTN,DTW ,IJBOND, JHAX,JAIN, KEAX ,KNIN, KCHEK
CCBHOK/IND,/ NFE (10)

COBMOB/FSE,/ TSR (10)

COBNON/POR/ ALP (3000) ,SXXS (3000),SYYS(3000),522S(3000), TXIS (3000)
+,TYTS (3000) ,T225(3000) ,TXYS (3000) ,PS (3000) ,EVVS (3000) ,BXXS (3009)
*, ZYYS (3000) ,EZZS (3000) , EXYS (3000) ,EJ (3000) ,ALPO(6) ,IPOR (6) ,CTCS (6)

DINMENSION Xl(KXX,JXX),!L(KXX,JXX),BB(KX!,JXX),LVIB(KXX,JXX)
*LXA(4),YA(L)

o o 10e 3=1,32320)
X (J;=0.

Y (J)=Ca
iv(J3)=.
YC (J)=0.
E{J,;=0.
A(J)=0.
J(d)=C.
D{J) =0,
SYX(J)=..
SYY (J)=).
S2.(d)=c.
TXxY (5)=3.
Txx (J)=C.
TYY(J)= J.
722 (J) =3,

6




P (J)=0.
E(J)=0.
YY (J)=2.

IS

ALP (J)=90.

SXXS (J) =0.
SYYS (J) =0.
$225(J) =0.
TXXS {J) =0.
TYYS (J)=0.
T225{J) =0.
TIYS (J) =0,
PS(J)=0.

EVYS {J) =0.
EXXS (J) =0.
BYYS (J) =0.
E22S (J) =0.
ZXYS {J)=0.
EJ(J) =0,

10_ coxTINyE

~

JR=JIA®KXY

Du 104 I=1,KXi
CC 104 J=1,0x%
XL (1,J)=-G96.
YL(1,3)=-696.
Ne(i,Jd)=0

1¢s LVAE (1,0)=0

KBAX=KXX
JAAX=JXX

EERD (1,1010) IJBUNL,NBLUCK,NSTKS,IVIYPE,KCHEK
WEITZ ({3,2V.1) 10BUND,NDBLOCK,NNTRS,IVIYPE, KCHEK

212 POHHAT(11,'IJBUND=',12,3X,'IBLOCK=',I2,3X,'NBTFS=‘,IZ,3X,
*YIVIYPE=Y,12,3X,'KCHEK=",12,//)

w

]

20 122 i=1,N%TRS
EEAD(1,1011) E,STC(1),EvSTD (1), BQSTG({I),EQSTS {1}, IPOR {I)
4E1TE(3,2122) EuSTC(I),EQSTD(I) ,EQ5TG (1), BYSTS5(1) ,IPOR (I)
-1 FORMAT(IX,*ELSTC=',E12.5,3%," BSTD=",E12.5,3X,  EQSTG=",E12.5
+,3X, BUSTS=",E12.5,3X,*IPOR=" ,12,/)
EZAD (1, 1012) kd0(I)},¥C(L),U8U(I),SP (I),NFR{I)
WBITZ(3,2123) EKO(I1),YC(I),UNU(I),5P(I),NPR (I)
=123 PORMAT(1X, *LENSITY=',E12.5,3X,'YC=',E12.5,3X, 'SHEAE MOD.=', E12.5
+3X, '50UND SPLED=*,£12.5,3X,'FBRACTUSE OPT.=',12,/)
REAL (1, 1104) CQSg(I),CLIN(I), TRIQ(I)
WEITL (4,22V5) CuSw(I),CLIN(IL),TRIy(I)
<15 FOEBIT(IX,'CQSQ=',Y\O.S,3X,'CLIH='.P\O.5.3!,'TBIQ=',PlO.S,/)
IP(IPOR(I).EQ.0) GO TO 114
RKEAD(1,1011) CTCS(I),ALPO (1)
WRITE (3,3233) CICS(I1) ,ALPO(I)
3c33 PCRBAT (1X,*CTCS=',E10.3,3X,*ALPO=",F10.5, //)

L4

Y1e IF (NFR(I).ZC.0) GO T0 105
EEAD(1,1011) TSBR({I)
#81Tz (3,4344) TSR (I)
4344y POBMAT(1X,*PEACTURE STRESS=',RBi2.5)

105 CCNTINOE

C--CELL LAYCUT
[

DG 250 BB=1,MBLOCK

READ(1,1030) K1,K2, (XA(I),I=1,4),NAT

WRITE (3,6580) K1,K2, (XA(I),I=1,4) ,HAT

EEAD (1,1030) J1,J2, (YA(I),I=1,4)

WRITE (3,6590) J1,32, (YA(I),I=1,4)
©23C PORMAT(1X,*K=',3X,2I5,3X, 'X=' ,4E12.5,3X," NAT=",13)
¢590 PUBBAT {1X,*J=",3X,215,3X,°Y=" ,4E12.5,/)




DJIDK=(J2-J1) * (K2-K}\)

DO 210 K=K1,K2

DO 210 J=J1,J2

IP(XL §K,J).E2.-999,) EL{K,J)= ((XA(1)* (J2-J) *+XA(4)*(I-J1)) (K2~
eK) ¢ (XD (2)*(32-T)+XA(3)*(J-J V) ) * (K-E1)})/DIDK

IP(YL (K,J).2Q.=-999.) YL (K,J)= ({YA (V)% (32-J)+YA{4) s(I=J1))* (K2~
¢K)¢ (YA(2)*(J2-T)*YA(3)*(J-3V) ) *(K-K)))/DIDK

IP (K.GT.K! .AND. J.GT.J1) HNM(K,J)=HAT

210 CCNTIBUE
250 CONTIIMUE

LVAzn=1
Ja=

DO 300 K=1,KMAX
DO 280 J=1,J4AX

IF(J.LE.1) G TO 261
IF(LVAB(K,0-1).GT.0) LVAR(K,J)=-1
Z2b1 IP(IL(K,J).Eu.-999..0B.YL(K,J).EQ.-993.) GO Tu 280

KB=K
JB=8AXO (JN,J)

LVAB (K,J) =LVARM
I(LVARN)=XL (K,J)
Y(LVAEN) =YL (K,J)
B(LVARM)=8M (K,J)
IB(LVARN) =2
AAT=RH(K,J)

1P (#8AT.EQ.0) GO TO 260

A124=0.5% (X1 (K,J-1) ¢ (YL (K,J)-YL(K-1,3)) -XL(K,J) * (YL (K,J~1)
3-YL (K=1,3)) +XL(K=-1,J) *{YL{K,J~-1)-YL (K, 3)}))

A234=0.5% (XL{K,J-1) ® (YL (K-1,J) -YL{K=1,J=1)} ¢XL(K-1,J)
@(YL(n=1,3-1)~-YL(K,J=1)) +XL(K-1,J-1) ¢ (YL (K,J~1}-YL (K=1,J))})

12=U. 25% (KL (K,J) ¢+XL (K,J-1) ¢IL (K=1,J) XL (K-1,J-1))
Y2=0.25% (YL (K,J) +YL (K, J=1) +YL (K=1,J) +YL (K-1,J-1))

D ILYAAM)=EHC (MAT)
1P (ivCa (BAT).NZ.0) D(LVALZ)=E:0 {MAT)*ALPU (MAT)
IP(IPOb (MAT).NL.D) ALP LVALM) =ALPO(MAT)

AjLVARY)=AT LR34

Ci{LVAEM)=D(LVAzF) A (LVARN)

IF(YC(MAT).bE.DQ.) YY(LVAENK)=YC(BAT)
2060 CCNTIDMUE

(g}

LVARE=LVARN+]
280 CONTINJE
300 CONTINIE

KM3i=KY
JHBAL=JN

«2ITE(3,132) KMAX,JMAX
132 FORNAT (1N, ' sMAL=",15,51,J8A=",15,/)

L
“
C==INITIALLIZE JEL. 1IN GUHE BLOUCK

IP(LvVIYPELE..0) SO Tu 450

LEAD (Y, 1030 JB,JU,KU,UZEHL

wPITE(3,2103) JB,JU,KD,UZERU
2163 FORMAT(VX,*Jd3=*,12,3X,'JU=",12,3Xx,'KU="*,12,3X,*UZBKO=¢,E12.5)

J.
BYA J.

ANMASS
3
aruUs=

5
1




319

(S oY
LN
€0

Y19
579

1010
110+«
Wn
112
1032
103z
12570

| R

HRU =1,
UZINT=UZERC

SC 512 J=2,34

IF (8% (KU,J).LZ.0 .OB. MM (KU+1,J}.LE.Q} GO Tu 310
KA=AN (K], )

1P (IPOEK (8A) .ME. 0) EKO=ALPO (MA)

uB=M# (KO*1,J)

1F (1POR (#5) .ME. 0) RKU1=ALPO (8B)

ANASS=AMASS +RKUSRHU (MA) * (XL (KU,J) =XL(KU~-1,J))
BMASS=BMASS +BKU 1#RHO (BB) ® (XL(KU+1,J) -XL (K0, J))
CCN¥TINUE

1F (ABASS+BAASS.GTe0co AND.IVTIPE.EY.~1) UZINT=UZERO*BEASS/
3 {ABASSeENASS)

IP (AMASS*BMASS.GT.0. .AND, IVTYPE.EQ.)) UZINT=UZERO*AHASS/
¢ (ARASSeBMASS)

26 325 K=1,K8AX

Do 325 J=1,JKAX

IF (LVAS (K,J).LE.O ) GO TO 320
LA=LVAE (K,J)

1P (K.GT.KU, AND.IVIYPE.EQ.-1) ID(LB)=UZEBEO
IF(K.lT.EU. AND. IVTYPE.EQ. 1) XD (LB)=UZEROC
IF({J.LE.JU. AND.K.EQ.KUs. ANDoJe GE.JB) XD {LN)=UZINT

CCNTINUE

L CCNT1NUE

1P (KCHEE. NE.O) GO TO 450
KCHEK=KBAX
IF (IVIYPE.EC. 1) KCHEK=KU+3

CCNTINUE

Wil

ZERC

oty

(3,1250)
J.

DL 470 K=1,KNAK

DC 4¢Q J=1,JMAX

LA=LVAZ (N,J)

1F(.®M,LE.0) GG TO 469

IP (WM ({K,J).GT.0) GO TU 455

®EITZ(3,1283) J K,M8(K,J},L4, X(L¥),Y(LY),2ERO,ZERO,ZERO,ZERD
LXD(Lm) ,YL{1IWK),7ERC

vC TC 460

BAT=2M{K,J)

Yyy=D0.

1F(YC (MAT)}.BE.C) YYY=YY (LM)

WEITE(3,1203) J,K, MAZ, LN, X(LM),Y(LM), A(LM),D{(LM),Z(LY),YYY, XD (LN)
LYo (L8) ,E(Le)

CCY¥TINUE

CCMTINUE .

.

-

FULHAT (SI5)

FCHMAT (3F10.3)

FPORMAT (4B10.3,15)

FUBMAT(4E10.3,15)

FCEMAT [215,4E10.3,15)

FO3IMAT(315,E10. 3)

FOASAT (IH1,4X,'d, 40X, "5L*,4X, 8%, LVAR®,V1X,'X*, 11X,
16¢,91X, Ynd, 11X, 14D, V14,142, 7X,5HYIELD, 10X, 24xD, 10X, 24YD, 11X,
14z

POHMAT (8IS, 5FTc.b,4 (1X,E10.6))

-

-

aETUFN
IND

SUBEUUT INE Sezz2P (JSIZE,JXX, KXa,XL,YL,HNN,LVAR)
I2PLICIT FEMAL®*S (A-L,0-4)
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< CONBON/T/X (3000 ,Y(3000),XD (3000) ,YD(3002),8(3000},A(3000)
+,2{5000),0(3000),SKX(3000),SYY(3000),522(3000),TXY (3000)
+,TEX(3000), 1YY (3000),7T2Z (3000),P(3000),E(3000),YY (3000),
+EVV (3030) ,EXX (3000) ,EYY (3000) ,222 (3000) ,EXY (3000) ,ALF {3000) ,

¢IH(330))

CUBBON/ELS/E\STC(6} ,E STD {0}, EQSTS (0} ,RHO(6),YC (6),UND(6)

*,CLIN(0) ,CQUSy(0) ,TEIQ(6) ,SP(6),EQSTG (6)

COoNNUN/GEN/UZELOU,DT,DTH, DTN ,IJBUND, IJNAX ,JHIN, KMAX ,KMIN,KCHEK

CUBBCH/IND/ NFR (10}
COBNCA/ESE/ TSR (10)

COMACK/?05,/ ALD (3000} ,SXXS (3600},5YYS(3009) ,5225(3000),TXXS (3009)
+,TYYS (3000) ,T225(3000), TXYS (3000) ,PS(3000) ,EVVS (3000) ,EXXS(3000)
+,2YYS (3000) ,E22S(3000),EXYS(3000) ,EJ(3000),ALPO(6),IPOE {6),CTCS (6)
DIBENSIUN XL (KXX,JXX),YL{KXX,JXX) ,8N(KXX,JXX),LVAR(KXX,JXX)
DIMEMSICN XTEMP (100),YTENP (100) ,XDTENP {100) ,YDTENP (100)

¢ 20 123 1I=1,100
XTEMP (I)=0.
YTEMP {I)=0.
XDTEME (1)=0.
123 (DTE®F{I}=0.

LIS .n=1.

Du 950 K=1, KnaX
DC 920 J=1,JnKAX

LVAER=LVAK [K,J)
IF(LVABRM.LE.D) GO TG 780

PrERVN
TIX&#=0.
TYY®=0,.
TZZW=0.
TXY=0,
SEXw=J.
SYYa=0,.
SZZu¥=0.
Ew=0,
Pu=0.
<=0.
SPSu=0.

C

C---MOMENTOUN

C
XDEH=XD (LVAEN)
YDNEH=YD (LVAEFY)
FX=0.
FY=0.
180n=0.
ABASS=J.
L3=1vARA

~

C~-FINL THE COOBD. OF CELLS ABOUND POINT (K,J)

C
CC 360 I=1,4

o

C dBITE (3, 1456) K,J,1 .

Clu56 PCRAAT(VX,'~——=---- ',315)
pEASS=0.
GC TO (230,240,250,260),1

~

C~-1=1, UPPEE BRIGHT HAMD WUADRANT

C

230 IP(KeEYeKMAX.OE.J.EQ.JHAX) GO TO 360

1P (un(Kel,J+1).LE.O) GO TO 360

LI=LVAR (K¢ 1,J+1)

L2=LVAR (K,J+1)
L4=LVAR(K+1,J)
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Le=11
BAT=NB(Ke1,J0¢ 1)
GO T0 270

¢

¢C--1=2,UPPER LEF1

C

240 IF(E.EQ.1.0B.J.EQ.JHAX) GO TO 360

IP(nN {K,J+1).LE.O) GO TO 3690

LV=LVAR (K-1,d+1)
12=LVAB (K~1,J)
L4=LVAR (K,J+1)
LE=L4
BAT=RH{K,J+})
GO TO 270

[

c--1=3, LOWER LEP1

-

250 IFP (K<EQ.1.0B.J.EQ.1) GO TO 360

IP (88 (K,J).1E.0) GO TO 360

L1=LVAB (K-1,J-1)
L2=LVAB (K,J-1)
L4=LVAR (K=1,J)
18=13
BAT=NE (K,J)
Go TO 270
«
C---Izu4, LOWER BIGHT
N _
2€0 IF(K.EQ.KAAX.OR.J.EQ.1) GO TO 360
IF(8B(K+1,J).LE.O0) GO TO 360

L1=LVAB(K+1,J-1)
L2=LVAG {(K+1,J)
L4=LVAR(K,J-1)
LE=12
NAT=B3{K+1,J)

GO 1IC 27G

£7) CONTINUE
v 300 X02=0.5S¢(X(L1)¢X(L2)¢X(L3)+X(LU))
Y02=0.5%(Y(L1)eY(L2)+Y(L3)+Y/LU})
-
375 0= (XO2-X(L3))® (Y (L2)-Y (L4))¢X(L2)* (Y (L3)+Y (L&) -YO02) ¢X (L4)
+o(YJ2-Y(12)~Y (L3)) '
A3=X (L4) * (Y (L2) =Y (L3))-X(L3)® (Y (L2)~Y (L&) )+X(L2)* (Y (L3)-Y(L&))

AXY= (AO+A3) /8.

AXX= (Y(L2)-Y(L4)) /2.
AYY=(X(L4)~X(L2)) /2.
TZZAXY=0,

IF (D8AS5S.NE.O.) GO TO 330
D8ASS=D (Ly) %AXY
30 T¢ 33

3:J QXx=0.
LYY=0.
JYY=2J.

C-=-ST:AINS ARE POSITIVE IN TENSION
IF(TRIQ (BAT).Ev.0. .OBR.A3.LE.Q. 1*AXY) GO TO 340

EDXX= ((XD(L2) -XD(L3}) ®(Y(L2)-Y(L4))-(XD(L2)-XD(LU)}*(Y(L2)~

*« Y(L3)))/A3

EDYY=~-( (YD(L2)-YD(L3))* (X (L2) -X(L4))-(YD(L2)~¥YD(L&4))*{X(L2)-~
+ X(L3))) /A3

EDXY= (- (XD(12)-XD (L3))* (X (L2) =X (L4) )¢ (XD(L2)-XD(LU))* (X (L2)~
1 I(L3))¢(YD(L2)-YD(L3))*{Y(L2)-Y(LU4))-(YD(L2)~YD(LU})*(Y(L2)~
2 Y(L3))) /A3
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C

C--TEIANGLE Q9 STEESSES ABE POSITIVE IN TENSION

o
COEP=DS\UBT (A3) *SP(HMAT) *D (LB) *TRIQ (MAT)
VXX=CCEP® (2.*EDXX-EDYY)
QYY=CQEF* (2.%EDYY-EDXX)
QXY=3.¢CCEF*EDIY

C

S840 PX=FX ¢ (TXX{1lM)+QXX)*AXX+¢ (TXY(LY)*QLIY)®AYY

FY=PY+¢ (TXY(LN) ¢QXY) *AXX ¢ (TYY(LN)*+QYY) *AYY-T2ZA XY

[

AMASS=ANASS+DMASS

WRITE(3,1976) 11,L2,1L3,L4,8AT,00,43,221,8YY
WEITE (3,1798) Q2X,QYY,QXY,¥X,FY ,AMBSS

1978 POBMAT (515,4212.4)

1766 FORMAT (6E12.4)

e OC OO0 e

[
'
'
s
C
-
-
7
-~
re
3
.

LB=LVR3(F,J)
IJBEABS=IABS (iJBUND)

1F (J.BEJ.JNAX.AND. (1JBABS.EQ.1.UE. IJCABS.L..5)) Gu TO 347
IFP(J.E . l.AND.IJBUND,.BE.~3) GO TO 347

J&5 YDNA=YD (LM8) ¢DIN®PY/ANASS

3647 (bW=Y {LB)eYLLH*LT

IP(K.Z..1.ANL. (IJBABS.Ey.U4.0R.1JBAD5,2..5.0h.,
o IJBABS.EC.c)) GO TO 357
IF(n.Ey.KEAX.AdD. IOBABS. 2 . 4) 5C Tu 357

390 L2Nn=X0 (LB) ¢DTL®PX/AMASS

3€7 XNw=f( (L®)+X_Nii®*DI
[P (MY (a,Jd)«Ev.0) GG TO 752

_--%Es AkKEA ANC YCL. FCR CELL K,J

Al u=XTZR2(J=1) % (YNW-YTLHP(J} )~ Xbhw* (YTZNy (J-1) -YTEXD(J) )+
V ITEZNE(J)*(YTEMP(J-1) -YN¥W)
L¥=LVAE (K,J)
LEN=LVAR {(K-1,0-1)
LKM=L¥AE(K,J-1)
LMJ=Lvan (KE=-1,J)

ACI=XTER2 (I~ 1) *(YTZME (J) ~YEMIN) ¢ XTIND(J) *(YrnMIN-YTENP (J~1) )¢
I XKagr» (YTEMP {J-1) ~YTENP? (J))

~
LD AE=00 50 (A12Ue A2 34
IF(Aw.37.0.; ¢ Tu 428
waiT:(3,1012) ¥,J
1710 POERMAI (‘wdeWnhwwndWehWdWWarin P! RRE-220Y,219)
G27 CobTIndt
Cuzl (i) /b
- w&ITE (3,050 7) n,Jd,Aal124,A234,Au,Dn
156 FLERAT (WX, clL,«b15,4)
.
C==CoPUTL STARINS
C

D1A=07/ (Aue A {LH))

X-13= (X (L®) ¢XNw) /oo -XUNY

XHwe= (ETE%P (J-1) ¢4 (LKM)-XTINP (J)-X (LnJ)) /2.
Y5t (Y(LM) ¢YNw) /2. -YHHBM

Yrwos (YTEMe (J= 1) ¢Y (Lol =YTZmE (Jj-Y (L"), / <.
FOERE EENUANES SENO N . 1 F

K36 =aLTINE(J=- 1 ~XLTENE ()

~I
I~




YURV3={DWH-1D (LAY}
YCHuZ=YDTENE {J- 1) -YDTEMP({J)

[
C--DEFINE LLUKD. CF CELL .
C
X1=0.58 (X (LE) ¢XNii)
12=0. 5% (XTERP (J) ¢X (LMJ) )
X3=XHAN
X14=0.58 (XTERP (J-1) +X (LKM} )}
¢
Y V=U. 5% (Y (L¥) +YBY)
Y2=0.5¢ (YTEBP (J) *Y {(LNJ) )
Y3=YHEN
Y4=0. 5% (YTERP (I~ 1) +Y (LKB) )
C

C--S UMEED CF VECIOBRS

<
XHAGUD= [XU-X3}*®2¢ (YL-T3)*=2
VEAGH 1= (Xu-X1)®82¢ (Y4-Y 1) *e?

LIMAG12= (X1-X2) %2+ (Y1-Y2) **2
IMAG23= (X2-X3)*%2s (Y2-13) #e2

“

C--D0OT FRCD
DU32==((X4—X3)® (X3~X2)+ (T&-Y3)*(XY3-Y2))
D3Zl==-((X3-X2)®(X2~-X1)+(¥3-Y2)* (Y2-Y1))
DIe3=—({X1-XU)®(XU=-X3)+ (Y1-YU)*(Y4~Y3))
D2Va=-((X2-X1)* (X 1-X4)+ (Y2-Y1) % (Y1-Y4))

.
U~- CLECA TC SEE IP PROJECTION LIES INSIDE CELL

IF{ D432.LE.O0.) D&432=0.
IF{ D2321{.1LE.O0.) D321=0.
IF{ D214.1E.0.) D214=0.
IP{ DYW3.LE.0.) D143=0,

DL32=T4 3289

DiZV=p321s%;

D214=521Us»g

DIu3=Cl43s*;
<
--PIND THE MINIMUB DISTANCE
DELX=DMIN1 (IMAGH43~DU43I2/XBAG23,

XMAG23-D4L3I2/XBAGE3,

N -

INAG23-D32 1/XEAG 12,
: INAG 12-D321/XHAG23,
“ XHAG 12-D214/XMAGHT,
5 INAG4 1-D214/XHAG 12,
. INAG41-D 14 3/XHAGAES,
7 IXAGU3I-D143/XNAGEY )

EvuL=2, # (D (L8)-DW¥)/ (D (L8) +D¥)

EXXU=DTA® (XDH42*YH3~-YH42%XDH 13)

EYYH=-DTA® (YDH4 2¢XH I3-XBU2*YDH13)

PITH=0,5%DTA® (YDHU2*YH13-YHU42*YDH13-XDHU2¢XH13¢XH424IDH 13)

BZZH=EVCL-EXXH-EYTH

ALFA=0.5%DTA® (~XYDH422YH 13+ YHG 2¢YDH13-XDH42¢XH 13 +X B4 2¢XDH13)
430 MAT=KB(K,J)

L

¢ WEITE(3,3562) J,K,DELX,EVOL,EXXH,EYYH,EZZH, BXYH,ALFA
C3%6. FCRRAT(215,7E12.4)
¢

[

C--VISCLSITY
SEh= i,
1F{IPOR (MAT)-NE.O) SPR=1.+¢(1.~ALP(LN))/ (1.-ALPO (MAT)) *(
«CIC5 (BAT) ~1.)

DELL=DW-D (L2
IF (DELD.GT.C.)
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+J=DELD/DT*® (SPR®*SP (BAT)®CLIN (8AT)*DSQLT (AW) +CQSQ (NAT)
¢®)AWSDELD/D¥/DT)

IF(DELD.LY.0.AND.IPOR (HAT). ¥E.O)

+Q=DELD/DT® (SPR*SP (RAT)®CLIN (RAT)*DSQRT (AW) «CQSQ (MAT)
¢+¢A*DELD/DVW/DT)

--ESTINATE INTEBEMAL ENERGY

nConon

DELZ= (54X (LM) *EXIHeSYY (LM) $EY YHeSZZ (LA) ®EZLHe 2. *TXY (LN) *EXYH) /Du
Ew=E (LMj #DELZ- (P(LM)+.) * (1. /DW=1, /D (L0);

EAVG=EVOL/3.

BETA=Z.%TXY (LH) *ALFA

IF{IPC3 (MAT).Z22.0) GO TO 601
CALL FCBEL (LM,EVOL,EXXd,EYYH,E22ZH,2XYd,SXXW,SYYW,S2ZW,TXYW,Pd,
BPu,BCTA,ALFA,LH,NAT,K,J)
GC IC 622

C

C

C-~ZLAhS11e MATERIML

C

Gl CALi ELST {te,DW,Pa,BEAT)

C

<
SYYw=3TX (i) ¢2. sUMU (MAT)* (EXXH-EAVG) ¢BLTIA
SYYW=SYY (LM)+.. %08V (MAT)* (EYYH-EAVG)~bETA
S¢Zw=SLI(LM)e2, *UNU (KAT) * (EZZH-EAVG)

TXta=TXY (LK) + . SUMU (MAT) SEXYde (SYY (LE)-SXX(LH)) *ALFA
C---V-h <LLEL

IF(YC (%AT}.1E.D.) GU TO 000
SJI=SIXuee+SYYwe®2+S2I U242, ¢ TXYuss
YYY=D.,€6606LT7%YY (LH) **2

IF(SJ2.LE.YYY) Gu TO 630

CY=0o.aT(YYY/5d2)
SXXd=CY*S5XXs
SYYe=CYe35YYh
SZ4w=CY*5ZZ7%
TXYd=CYSTXYh

e

C--ADJUST INTERNAL ENERGY

C

0Ju Ew=E (L) +0,5% ((SXX(LN)¢SXXN)*EXXH+ (SYY (LN)+SYYW)*EYYHe (SC2Z(LN)+

| SILu)®EZZH42.% (TXY (LK) +TXYW) $EXYH) /D~ ((P{LB)+PW) /2.¢Q)* (1./
<D¥-1.,/0(Ln))

C

C-- COBPUTZ TOTAL STRESS

c
620 TXXW=SXX¥§-Pw-Q

TYYW=SYYU-Pli-y
T224=S2Z¥-PU-Q

C

C---3ZPASATION OF IMPACT PLANE

c
T¥ (NPR (BAT) .NE. 5. AND. NPR (MAT} .NE.6) GO TO 690
1P (NFE(HAT) .BEQ.6) GO TO 650
IP(TXX¥.LE.TSR(MAT)}) GO TO 690

C

P1=TAAWSELSTC (MAT)/ (ESSTC (MAT) ¢ 1. 333350 80 (MAT))
DSA=1,33338TXXN¢OMU (MAT)/(BEQSTC (MAT) ¢+1,3333sUNU (MAT))

T Xw=TZXW-DSX-P)
TYYs=7YYW-P V#DSX,/2.
12Z%=T2ZW-P 1+DSX/2.

o

Fi=- (TXXWeTYYW+T220) /3.
TIYd=C,
GG TC €82
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©5) IF(TYYW.LE.ISR(BAT)) 6O TO 690

P1=TYYW®EQSIC (HAT)/ (EQSTC (HAT) ¢+ L. 3333%UNU (NAT) )
DSY=1.3333%TYYWSONU (BAT)/ (EQSTC (NAT) + 1. 3333+#UN0 (NAT))

TXX8=TXAW~-P1+DSY/2.
TYYW=TYY§-P }-DSY
TZ28=TZZW-P1eDSY/2.

Pi==- (IXXBeTYYW+IZ2W) /3.
TIYWE=0J.

680 IF(IL(LM)eEC.1) GO TO 690
i1d(L8)=1

WRITE (3,1680) K,J
1680 PCENAT(1X,* SEPARATION AT CELL K,J =*,2I4)
c .
C~--COMPUTE SOUND SPEED AND TIN. T
-
v5J EBOD=0.
SPSQ=SP (HAT) ®e2
IFP (IPCB (MAT).NE.0) SPSQ=SPSQ¢SPR®SPR
1P (DABS (DW~C (LB)).LT. ). E-8) GO TO 700
EBOD=Pi/ (DW/RHO (MAT)~ 1. ) +2.%Q*D¥/ (DU-D (L#)) +1,33* UKD (NAT)
SPSQ=DAAX1(ENOD/D (L), .3®SPSQ)

73) DI1S2=DELX/SPS¢
IP(DTS2.GE.DTISQB) GO TO 750

KT=K
J1=J
DELXT=DELX
DIST=DTS(
SPS2T=SPSQ
DTS ¥=DTSD

CCNTINUE
CCNTINUE

~d o~
o

[ ]

1F (K.-EQ.1) GO TC 790
1IP(J.EQ.1) GO TC 785
LBN=LVAB (K-1,J-1)

1P (LEN.LE.Q) GO TO 785
X (LBN)=XKHIR

Y (LAK)=YKRIN

733 CGETINUE
LEJ=LVAR (K- 1,J)
1F (L8J.LE.O) GO TO 790
XHEN= (X (LBJ) +XTENP (J} ) /2.
YHENB= (Y (LBJ) ¢ YTENP (J) ) /2.
IKBJIB=XTENP {J)
YKMIN=YTEMP (J)
iD(LBJ) =XDTEMNP (J)
YD (LKJ) =YDTENP (J)

790 IF(LVABK.LE.O0) GO TO 920
ITESF (J)=XNU
YTENP §J)=YN&
IDTERMP (J)=XLNH
YDTEMP {J) =YDNB
IP(RE(K,J).EC.0) GO TO 800

7395 LE=LVaARS
D(LH)=DN
B(LH)=EN
SYX {LB)=SXX®
SYY {LH) =SYYh
S2Z (LB) =SZZ%
TXY (LB) =TIY6
TXX (L8)=TXIXh
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)

800
929

Sau

945
948

950
9€0

vou

TYY (LH) =TYYWM

T2Z (LB) =T22%

P (LK) =Ps

EVY (L) =EVV (LN) ¢+EVOL
EXX (LB) =EXX (LN) ¢EXXH
EYY (1B) =EYY (LM) ¢EYYH
EZZ (LB) =EZZ (LN) ¢BZZH
EXY (L) =EXY |LN) +EXYH
ALF (L8) =ALP (L) ¢ALFA

COBTINUE
CONTINUE

17 (K. EQ.1) GO TO 940
LAJ=LVAR (K- 1,J8AX)
I1P(LBJ.LE.O) GO TO 940
I(LBJ)=XKAJN
Y(LMI)=YKNTR

AK=K
1P (K.1T.KCHEK.OR.K.EQ.KMAX) GO TO 950

DO 945 J=1,9HAX

L8J=LVAB (K-1,J)

IF(LNJ.LE.O) GO TO 945 .
IP(DABS(XD(LHJ)).GT..IE-3.08.DABS(YD(LHJ)).GT..l£-3) GO TO 948
CCNTIBUE

GC TIC 9€0

KCHEKR=MINJ (K+1,KNAX)

G0 TC 962

CCETINUE

CCNTINUE

U0 80 J=1,JNAX
LMI=LVAS (KK,J)
IP(LMJ.LE.O) GO TO 980
X (LBJ)=4T2HE (J)
Y(LBJ)=YTEAF (J)

ID(LuJ) =XDTEMP (J)

YL (LNJ) =YDTENP (J)
CCHNTIBUE

DTi=DSQET(DISJﬂ)‘(l.-J.‘TEIQ(I‘)

BETUEN
ZND

SUBBVUUTIME ECST (2,D,P,H)
IMPLICIT EEAL*8 (A-H,0-2)

CORMON/BLS/EYSTC(6) , EYSTD (6), EQSTS (6) ,EHO (6) , YC (6), UNU (6)
¢ CLIN(6),CUS2(0),TRIQ(6),SP (6),EqSTS (6)

EMU=D/EHU () - 1.

PH=ERD® (E_STC (M) +EBU® (EQSTD (M) + ENUSEQSTS () ))

P=PH* (1.-0.5%EQSTG(N) #( 1. ~EHO (M) /D) ) +£.STG (K) *RHO (B) #E
BETURN

END

5UshUUTINE FOBEL (DW,EVOL,BXXH,EYYil, BZZH,EXYH, SXXW,SYYW,
+52.%,TXYw,P%, EW ,BETA,ALFA,LN, HAT, K, J)

IBPLICIT BEAL*8 (A-H,0~Z)
CCMACN/T/X(3000),Y(3000),XD(3000),YD(3000),H8(3000),A (3000)
0,2(3000),D(JOOO),SXX(SOOO),SYY(JOOO).SZZ(JOOO),TX!(JOOO)

*,TXX (3000), 1YY (3000),722(3000),P(3000),E(3000),YY (3000),

$EVV (3000) ,EXX(3000) ,EYY (3000) ,E2Z(3000) ,EXY (3000) ,ALF (3000) ,
+1H4{30C0)
CCHBON/ECS/EQSTC (6) ,BQSTD (6) ,EJSTS (6) ,RHO (6) , YC (6) , UAU (6)
¢,CLIN(6),CQ5Q(6),TRIQ(6),SP(6),EQSTG(6)

CORBOK/PUE/ ALP (3000) ,SXXS (3000),5YYS(3000),5225(3000), TXXS (3000)
*+.TYYS(3000) ,T225(3000) ,TXYS (3000, ,P5(3000), EVVS (3000) ,EXXS (3000)
*#EYYS (3000) ,E225(3000), EXYS (3000) ,EJ(3000) ,ALPO(6), IPOR (6) , CTCS (6)
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C

C----ALP2, ALPA AT PREVIOUS TIME PTO, PRESSURE AT PREVIOUS TIME
C ALPP,PTP, ARE VARIABLES POB ITERATION PHOCESS
C

RLPG=ALP (1M)
C wEITE(3,123) K,J,L8,ALP (L8) ,P (LN)
C 123 POBMAT (1X,'EBPORE',315,5X,2E12.5)
€ 1z4 POBBAT(1X,*APIER',3I5,5X,5E12.5)
ALPP=ALPY
PT0O=P (LN)
PIP=P TV
HH=1. ¢ (1.~ALPQ) /(1. ~ALPO(MAT) } * {C1CS (NAT) ~1.)
I1=1

10 BHOS=CW/ALPE
CALL EQST (EW,BHCS,PSS,MAT)

PIT=ALPP*PSE

IP(DABS (PTP-PTIT).LE.O.1) GO TO 100
C
C-=--THE PHGCEDURE TG PIND NEW PTP

C
ANU=Ed4US/BHC (8A1T)
<
DAPP= (1. /HH/HH~ 1.) /EQSTC (NAT)
DAPT=-1./(E(STC (BAT) ¢EQSTD (BAT) * (ANU-1.)* (ANU+1.))
C
PTP= (PTP*DAPP-PTITI*DAPT) / (DAPP-DAPT)
ALPP=ALPC* (FTP-PTQ) /ECSTC (MAT) * (1. /HH/HH-1.)
C WRITE (3,100C) I1,LM,BRBOS,ALPQ ALPP,PTY,PTP, HH
C12000 POBMAT(2IS,€EE12.5)
I11=11+)
IF(I1.GT1.20) CALL EXIT
C
SC TIC 10
13) CONTINUE
.
(-~--NEGATIVE PRESUKE AT UNDISTUXRBED CELL IS FORCED TC GO
C LACK TC OBEIGINAL STATE
C
Cuc IF (ALF?2.LT.ALPO (MAT)) ALPP=ALPO (NMAT)
C

C---NEw ALPA AND FRESSURE WE: E DECIDED. NOW GOING FOR DEVIATORIC
C STRESS ’
C
DALP=ALPP~ALP,
EAVG=EVCL/3.
ALYT= 1. ¢DALE/EVYOL/ALPP
IF(ALVT.LE.J.) GU TO 2469
IP(ALVT.GE. 1.) ALYT=1,
GC TC 247
i49 ALVT=0.
247 ETXX=EXXH-EAVG
ETYY=EYYH-EAVG
ETZZ=EZZH-EAVG

ESXX=ALVTSETXX
ISYY=ALVI®ETYY
ISZZ=ALVTeETZZ
ESXY=ALVISEXYH

ISKX=4. *UNU (BAT)#ESXX+BETA

SoYY=2.%UMU (MAT)*ESYY-BETA
D322=2. ¢UNU {(BAT) *ES2Z

D52Y¥=2. %080 (BAT) ®*ESXY+(SYYS(LM)~SXXS(LM)) *ALFA

SXXS (LM)=SXXS(LR) +DSXX
SY?S (LM)=SYYS (LM} ¢DSYY
S2ZS(LM)=SZZS(LH)+DSZ.
TXYS(LM)=TXYIS(LM) +DSLY

SXAd=ALPP*SXXS (LH)*1,0
SYYW=A_PP®SYYS(LM)®*),C
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SZZW=ALPP*SZZS(L8)*1.0
TXYW=ALPP*TIYS(LH)*1.0
SRITE(3,1457) SXXN,SYYd,SZ2ZW,ALVT
14S7 PORBAT(1X,'DEV',4E15.5)
Ik cu1
ALLZ sRESULT FPRON ELASTIC
ALPC (MAT) sINITIAL POBOSITY
z2J{Ly) +3J2%+, 5 AT PHZVIOUS TIME FOR STARTING POINT
ALP ; PBEVIOUS ALPA FUFE STAFTING POUINT
Le + CUBRENT TOTAL DENSITY
PTP s BESULT FROM LELASTIC
RHO (MAT) , INITIAL SOLID DENSITY

~eNCCAANCHACNOD

CALL BLIPT (ALPP,ALPO(MAT},co({L¥), ALPL,DVW,PTP,P(LE),BEO(NMAT),
+ECSTC (MAT) , EQSTD (BAT) ,SXXW,5Y YW ,SeZW,TXYW ,K,J)

Fu=PTE

ALP (LM) =ALP{
PS{LB)=Pu/ALPQ
SXXS (LH)=SXEN/ALP,
SYYS (LM)=SYYW/ALPQ
S$225 (LM)=SZ2N¥/ALPQ
TXYS (LN)=TXTW/ALPQ

243 BETUES
END

g ol

SUBROUTINE ELIPT (ALFO,ALPP,EJP,ALPA,RBHO,? F,PRP,RHOS, AP,BP, SXXN
+,SYYW,S224, 1XYW ,K,J)
IMPLICIT BEAL®B [A-i,0-2)
C
C---E£J,ALPA1 AT PREVIOUS STEP FOR STABTING POINT
.
AAA=1.00
¥=2.0506
BETA= 6.
C~---PUT PEEVIOUS ALPA POR CHECKING PLASTIC BRANGE
ALPA=ALFAI
2J=EJE
P=PP
€C=1.000
AN=2,D00
C=.0C00
cp=.175
CKk=1.00D06
C---CUBBENT DEVIATOBIC TERS
SUM=SXXN®SKXN¢SYYWSSYTW+SZZW®SZZU+2, *TXYN*T XYW
EJO=DSQRI (1.5*SUN)
EJI=EJO
11=1
KK=1
[
(----CARULL-HOLT'S PRESSURE EQUATION
[
R1=2.000,3.L00
C
30 TC 130
90 I3=2
¢CC  IP(PP.GT.PRF ) GO TO 100
“
C---~PLASTIC UNLOADING
A\
CuC  CALL PLAST(P1,Y1,Q0,AN,C,OK,PRP,PP,EJP, EJC,EJ1)
[ KK=2
CCC GC TC 400
<
L--~STAETED WITH EREVIOUS ALFA
Y
100 B.=n1%BETA
K3=AAA-ALFA
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PI=Y/BETA®(1.D00/R3%%R2-CP/ (AAA~-ALPP) #*R2)
DP1=1.8R1eY/E3% ¢ (R2¢1,D00)
ODP1=1.%R1¢Ye¢ (R2¢1.D0J) /B3*%(8242.D00)

<

C-----PRESSUHE-ALFA RELATION

<
R4=BHO/ALFA/RHOS
E5=BU4~1.000

IP(I1.EC. 1) GO TO 799
P=ALFA® (AP®E5+¢BP*BE5*3Y)
DP=~AP-BP* (B4*R4-1.)
DDP=2,DJ0*bBEF/ALFA*RU®RY
<
C--=--0EVIATQRIC TERM AND ALFA
<
7359 Y1=QUSRIssANsp|
DY 1=0C* (-AMSR3*% (AN-1.DJ0)*Plep3**pAN*DP 1)
CDY V=20 (AN® (An-1.D00) *R3%* (AN-2.D00) *P1-2,D00*AN*R3I** (AN~1.D
. 00)sDP1 +RIs*AM*DDPI)
«
C---2 AND b
S
R6=1.D20-C
5§7=1.L00e¢C

A=2.D00*P-E6*P1+0K
CA=2.D0O*DP-Ru*DP!
DDA=2.DJ0*DLP-E6%DLPI

B=R7*P1+0K

IF(II.E . 1) GCOM=A®*A/B/B¢*EJO*CIC/YI/Y1- 1L
IP(IX1.Ec. 1. ANL. GCOB.GT.0.) GG TO 90

C ¥BITE (3,120C) GCoM,a,B,EJO0, Y!

C1.0) FOBRMAT(1X,'GCOoNM*,SE15.5)
IF(II.Zy.1. 8NC. GCOB.LE.0.) GO TO 330
CB=R7%DP1
DLB=57+DDP1

-

C--~YI1ELD FUKCTIIOUM

C
G=A®A/B/B¢EJ*EJ/YI/Y1-1.D00
GA=2.D00% (A®DA-A*A*DB/B) /(B*B) -EJ*EJ*DY L/YI/Y 1/Y1}
GAA=CA®*DA+3,D00*a%A*DB*DB/E/B-4.D00%A®*DA*DE /B
GAA= (GAA*A®LDA-A®*A*DLB/B) /B/B
GAA=2.D)0% {(GAA+EJ*EJ/YI/Y1/Y1* (3.D00O*DY 1#DY I/Y1-DDY 1))

GJ=2.DI0*EI ST 1/Y1
GJJ=2.D30/Y /1)
GAJ=-4, DOO*EJ/Y 1*DY 1/X1/¥ 1
C
¢--- ELEBENT CP JAMCOBIAN

-
L

AJ11=2,D00% (GJe (ALPA~ALFU) *GAJ~ (EJ-EJO) *G AA)
AJ1s=2. DOO® ((ALFA~ALFO) #GJJ GA- {EJ-EJO) *GAJ)
3J21=GA
AJ22=GJ
C
DET=AJ1 1#AJ22-AJ12*AJ21
C
C---ANOTHEE NONLINEAR EQ. WITH YIELD PUNCTION
C
F=2.D00® (ALFA=ALPO) *5J-2.D00* (EJ-EJO) *GA
C
C----N2W ALFA MND DEV. TE&HM
C
ALPAA=ALFA- (AJ22¢FP-AJ12%G) /DET
EJV1=EJ~ (~AJ Z{®F+AJ11%G) /DET
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C
C---EJJ FRO® YIELL PONCTION DIRECTLY

E3J=2.D00%DS BT (DABS ((P 1-P) * (P+OKeC*P1)))

BJJ=EJJ/ (E1¢CKeCOP1) *Y

IP(I1.GE.45) WRITE(3,1000)K,J,I1,ALPA,KHO,EJ,BJJ,P,P1,F,G
100 PCRMAT (315, 8E12.5)

EE3=1.0C0-08

STCC=DAES ((EJ1-EJ) /EJ 1)
STCD=DAES{(2LFPAA-ALFA) /ALP3A)

1P (STCC.LE. EER. AND. STOD.LE. EEB) GO TO 400

EJ=EJ1
ALFA=ALFAD
FE=F
GG o
I1-ile}
IP(I1.GE.50) WBITE(3,1001)I1,RBHQ,STCC,STOD
IF (1X.5E.50) CALL EXIT
15¢1 PCBMAT (5X,*'MEWTCN METHOD DOES NOT CONVEEGE',I15,3E15.5)

SC TC 100

UC) CCNTIBNUE
IF (Kh.dE.2) PP=P
EEJJ=EJ\/EJC
SXXW=SXXWSEEFJJ
SYYW=SYYWSEEJJ
SZLW=S2ZW*LEJJ
TIYW=TXYW®*2EJJ

303 IP(I1.Z..1) ALPAl=ALFO
IF(Ii.NE.1) ALFAI=ALPA
Cen IP(ALPA1.LE.ALPP) ALPA1=ALPP

EJP=EJ1
RETUEN
N

SUBRUJT INZ FLAST(P1,Y1, 4U,aM,C,CK,PRP,P,EJ, EJO,EJJ)

INPLICIT EREAL®3 (A-H,0-2)
PK=OQKelop1

FP=,5%(P1+PK)

PH=.5% (F1-PK)

C---?zF,EJ AMhE FrEVIOUS POINT FOT STABTING POINTS

«
II=1
PUI=PEP
EJI1=EJ
C

C--~JACCBIAN
L
15 AJ11=Z. %20 1-2N) /PP/PP
AJ12=2. sEJ 1 Y /Y1
AIZ1=4. # (EJ 1 Y1 /Y V- (EJV-EJU) /P /PP)
AJ22=w. 2 {(PU1-P) /YI/Y - (PUI-PN) /PP/P?)
DET=AJ118aJ22~-Ad12%aJ21

GG= (FUl-pH) * (PUY-PH) /PP/PP+EJ1*EJ /Y 1/Y 1- 1,
Fr=4.,®(EJ1s (PUV-P)} /Y 1/Y 1~ (PUV~-PN) ¢ (EJ1-EJO) /PP/PP)

P02=~- (AJ22%GG-AJ12*FF) /DET+PU
EJ2=EJ1- (MJV11*PF-AJ21%GG) /DET

EaBE=1,De02

STUC=DABS (PU02-PU1)
STCD=LAES (EG2-EJ V)
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